Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Toxins (Basel) ; 9(11)2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-29088078

RESUMO

Several strains of a new aflatoxigenic species of Aspergillus, A. korhogoensis, were isolated in the course of a screening study involving species from section Flavi found contaminating peanuts (Arachis hypogaea) and peanut paste in the Côte d'Ivoire. Based on examination of four isolates, this new species is described using a polyphasic approach. A concatenated alignment comprised of nine genes (ITS, benA, cmdA, mcm7, amdS, rpb1, preB, ppgA, and preA) was subjected to phylogenetic analysis, and resulted in all four strains being inferred as a distinct clade. Characterization of mating type for each strain revealed A. korhogoensis as a heterothallic species, since three isolates exhibited a singular MAT1-1 locus and one isolate exhibited a singular MAT1-2 locus. Morphological and physiological characterizations were also performed based on their growth on various types of media. Their respective extrolite profiles were characterized using LC/HRMS, and showed that this new species is capable of producing B- and G-aflatoxins, aspergillic acid, cyclopiazonic acid, aflavarins, and asparasones, as well as other metabolites. Altogether, our results confirm the monophyly of A. korhogoensis, and strengthen its position in the A. flavus clade, as the sister taxon of A. parvisclerotigenus.


Assuntos
Aflatoxinas/metabolismo , Aspergillus , Sequência de Aminoácidos , Arachis/microbiologia , Aspergillus/citologia , Aspergillus/genética , Aspergillus/isolamento & purificação , Aspergillus/metabolismo , Côte d'Ivoire , Contaminação de Alimentos/análise , Genes Fúngicos , Filogenia , Metabolismo Secundário
2.
PLoS One ; 7(2): e29906, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22319557

RESUMO

Inhalation of Aspergillus fumigatus conidia can cause severe aspergillosis in immunosuppressed people. A. fumigatus produces a large number of secondary metabolites, some of which are airborne by conidia and whose toxicity to the respiratory tract has not been investigated. We found that spores of A. fumigatus contain five main compounds, tryptoquivaline F, fumiquinazoline C, questin, monomethylsulochrin and trypacidin. Fractionation of culture extracts using RP-HPLC and LC-MS showed that samples containing questin, monomethylsulochrin and trypacidin were toxic to the human A549 lung cell line. These compounds were purified and their structure verified using NMR in order to compare their toxicity against A549 cells. Trypacidin was the most toxic, decreasing cell viability and triggering cell lysis, both effects occurring at an IC50 close to 7 µM. Trypacidin toxicity was also observed in the same concentration range on human bronchial epithelial cells. In the first hour of exposure, trypacidin initiates the intracellular formation of nitric oxide (NO) and hydrogen peroxide (H2O2). This oxidative stress triggers necrotic cell death in the following 24 h. The apoptosis pathway, moreover, was not involved in the cell death process as trypacidin did not induce apoptotic bodies or a decrease in mitochondrial membrane potential. This is the first time that the toxicity of trypacidin to lung cells has been reported.


Assuntos
Aspergillus fumigatus/patogenicidade , Pneumopatias/microbiologia , Micotoxinas/toxicidade , Esporos Fúngicos/patogenicidade , Apoptose , Aspergillus fumigatus/química , Brônquios/patologia , Linhagem Celular , Células Epiteliais/efeitos dos fármacos , Humanos , Estrutura Molecular , Estresse Oxidativo/efeitos dos fármacos , Esporos Fúngicos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA